Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Molecules (Basel, Switzerland) ; 28(5), 2023.
Article in English | EuropePMC | ID: covidwho-2281841

ABSTRACT

The interaction of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain with the host-cell ACE2 receptor is a well-known step in virus infection. Neuropilin-1 (NRP-1) is another host factor involved in virus internalization. The interaction between S-glycoprotein and NRP-1 has been identified as a potential COVID-19 treatment target. Herein, the effectiveness of folic acid and leucovorin in preventing contact between S-glycoprotein and NRP-1 receptors was investigated using in silico studies and then confirmed in vitro. The results of a molecular docking study showed that leucovorin and folic acid had lower binding energies than EG01377, a well-known NRP-1 inhibitor, and lopinavir. Two hydrogen bonds with Asp 320 and Asn 300 residues stabilized the leucovorin, while interactions with Gly 318, Thr 349, and Tyr 353 residues stabilized the folic acid. The molecular dynamic simulation revealed that the folic acid and leucovorin created very stable complexes with the NRP-1. The in vitro studies showed that the leucovorin was the most active inhibitor of the S1-glycoprotein/NRP-1 complex formation, with an IC75 value of 185.95 µg/mL. The results of this study suggest that folic acid and leucovorin could be considered as potential inhibitors of the S-glycoprotein/NRP-1 complex and, thus, could prevent the SARS-CoV-2 virus' entry into host cells.

2.
Molecules ; 28(5)2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2281842

ABSTRACT

The interaction of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain with the host-cell ACE2 receptor is a well-known step in virus infection. Neuropilin-1 (NRP-1) is another host factor involved in virus internalization. The interaction between S-glycoprotein and NRP-1 has been identified as a potential COVID-19 treatment target. Herein, the effectiveness of folic acid and leucovorin in preventing contact between S-glycoprotein and NRP-1 receptors was investigated using in silico studies and then confirmed in vitro. The results of a molecular docking study showed that leucovorin and folic acid had lower binding energies than EG01377, a well-known NRP-1 inhibitor, and lopinavir. Two hydrogen bonds with Asp 320 and Asn 300 residues stabilized the leucovorin, while interactions with Gly 318, Thr 349, and Tyr 353 residues stabilized the folic acid. The molecular dynamic simulation revealed that the folic acid and leucovorin created very stable complexes with the NRP-1. The in vitro studies showed that the leucovorin was the most active inhibitor of the S1-glycoprotein/NRP-1 complex formation, with an IC75 value of 185.95 µg/mL. The results of this study suggest that folic acid and leucovorin could be considered as potential inhibitors of the S-glycoprotein/NRP-1 complex and, thus, could prevent the SARS-CoV-2 virus' entry into host cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Docking Simulation , Leucovorin , Neuropilin-1/metabolism , Folic Acid/metabolism , Virus Internalization , COVID-19 Drug Treatment , Protein Binding , Glycoproteins/metabolism
3.
Clin Hemorheol Microcirc ; 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2289150

ABSTRACT

INTRODUCTION: This study was created to analyze dynamic alterations in coagulation, hematological and biochemical parameters and their association with mortality of COVID-19 patients. To identify the most sensitive biomarkers as predictors of mortality more research is required. METHODS: The present study was a prospective, one-year-long observational study conducted on all critically ill, COVID-19 patients with respiratory failure. The following data were collected: demographic and clinical characteristics of the study population, comorbidities, coagulation, biochemical and hematological parameters. The primary outcome was the proportion of patients who died. RESULTS: 91 patients with median age 60 (50-67), 76.9% male, met the acute respiratory distress syndrome criteria. It was tested whether dynamic change (delta-Δ) of parameters that were found to be predictors of mortality is independently associated with poor outcome. Adjusted (multivariate) analysis was used, where tested parameters were corrected for basic and clinical patients characteristics. The only inflammatory parameter which dynamic change had statistically significant odds ratio was ΔCRP (p < 0.005), while among coagulation parameters statistically significant OR was found for Δ fibrinogen (p < 0.005) in predicting mortality. CONCLUSION: Monitoring of coagulation, hematological and biochemical parameters abnormalities and their dynamical changes can potentially improve management and predict mortality in critically ill COVID -19 patients.

4.
Mol Cell Biochem ; 476(2): 1179-1193, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-927669

ABSTRACT

The search for effective coronavirus disease (COVID-19) therapy has attracted a great deal of scientific interest due to its unprecedented health care system overload worldwide. We have carried out a study to investigate the in silico effects of the most abundant pomegranate peel extract constituents on the multi-step process of serious acute respiratory syndrome coronavirus 2 (SARS-CoV-2) internalization in the host cells. Binding affinities and interactions of ellagic acid, gallic acid, punicalagin and punicalin were studied on four selected protein targets with a significant and confirmed role in the process of the entry of virus into a host cell. The protein targets used in this study were: SARS-CoV-2 spike glycoprotein, angiotensin-converting enzyme 2, furin and transmembrane serine protease 2. The results showed that the constituents of pomegranate peel extracts, namely punicalagin and punicalin had very promising potential for significant interactions with the selected protein targets and were therefore deemed good candidates for further in vitro and in vivo evaluation.


Subject(s)
COVID-19 Drug Treatment , Plant Extracts/chemistry , Polyphenols/chemistry , Pomegranate/chemistry , COVID-19/virology , Computational Biology , Humans , Plant Extracts/therapeutic use , Polyphenols/therapeutic use , Protein Binding/drug effects , Protein Domains/drug effects , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL